thegeneral science
 Journal

Increase of Mass in a Gravitational Field

Mohammadreza Tabatabaei contact@ki2100.net

As we know, force multiplied by distance equals energy:

$$
\mathrm{E}=\mathrm{F} . \mathrm{d}
$$

\mathbf{E} represents energy; \mathbf{F} represents force and \mathbf{d} is distance. Also the gravitational force between two masses is calculated by the following equation:

$$
F=\frac{G M m}{r^{2}}
$$

Where \mathbf{G} equals the global constant of gravity and \mathbf{M} is the first mass (celestial substance), \mathbf{m} represents the second mass of a material and \mathbf{r} is the distance between two centers. So gravitational potential energy is obtained in the following ways:

$$
\begin{aligned}
& E=F \times d \\
& d=r \Rightarrow E=F \times r \Rightarrow F=\frac{E}{r} \\
& \frac{E}{r}=\frac{G M m}{r^{2}} \Rightarrow E=\frac{G M m}{r}=U
\end{aligned}
$$

\mathbf{U} represents gravitational potential energy that equals and is equivalent to the corresponding mass, and it will increase the mass. Now we calculate the amount of masst:

$$
\begin{aligned}
& U=\frac{G M m_{0}}{r} \\
& E=m c^{2} \\
& E=U \\
& \Delta m=\frac{E}{c^{2}}=\frac{U}{c^{2}}=\frac{\frac{G M m_{0}}{r}}{c^{2}}=\frac{G M m_{0}}{r c^{2}} \\
& m=m_{0}+\Delta m=m_{0}+\frac{G M m_{0}}{r c^{2}} \\
& m=\frac{m_{0} r c^{2}+G M m_{0}}{r c^{2}}=\frac{m_{0}\left(r c^{2}+G M\right)}{r c^{2}}
\end{aligned}
$$

\mathbf{m}_{0} is the initial mass of a material, \mathbf{c} is the speed of light, $\Delta \mathbf{m}$ is increase in mass of the material in a gravitational field and \mathbf{m} is its final mass in a gravitational field.

Hence, we calculate 1 kg mass of material on the sun's surface:

$$
m=\frac{m_{0} \mid r c^{2}+G M}{r c^{2}}=\frac{1 \times\left|6.96 \times 10^{8} \times 9 \times 10^{6}+6.67210^{11} \times 1.99 .10^{30}\right|}{6.96 \times 10^{8} \times 9 \times 10^{6}}=1.000002
$$

